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Townsend’s attached eddy hypothesis forms the basis of an established model of the
logarithmic layer in wall-bounded turbulent flows in which this inertially dominated
region is characterised by a hierarchy of geometrically self-similar eddying motions
that scale with their distance to the wall. The hypothesis has gained considerable
support from high Reynolds number measurements of the second-order moments of
the fluctuating velocities. Recently, Meneveau and Marusic [“Generalized logarith-
mic law for high-order moments in turbulent boundary layers,” J. Fluid Mech. 719,
R1 (2013)] presented experimental evidence that all even-ordered moments of the
streamwise velocity will exhibit a logarithmic dependence on the distance from the
wall. They demonstrated that this was consistent with the attached eddy hypothesis,
so long as the velocity distribution is assumed to be Gaussian (which allows the use
of the central limit theorem). In this paper, we derive this result from the attached
eddy model without assuming a Gaussian velocity distribution, and find that such
logarithmic behaviours are valid in the large Reynolds number limit. We also revisit
the physical and mathematical basis of the attached eddy hypothesis, in order to
increase rigour and minimise the assumptions required to apply the hypothesis. To
this end, we have extended the proof of Campbell’s theorem to apply to the velocity
field corresponding to a forest of variously sized eddies that are randomly placed on
the wall. This enables us to derive all moments of the velocity in the logarithmic
region, including cross-correlations between different components of the velocity.
By contrast, previous studies of the attached eddy hypothesis have considered only
the mean velocity and its second order moments. From this, we obtain qualitatively
correct skewnesses and flatnesses for the spanwise and wall-normal fluctuations.
The issue of the Reynolds number dependence of von Kármán’s constant is also
addressed. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905301]

I. INTRODUCTION

Turbulence has proved to be a notoriously difficult phenomenon for which to produce physical
models. This is in large part due to the fact that turbulent flows consist of motions at a multitude of
scales, most of which must be accounted for in any successful model. For this reason, the earliest
models of turbulence have instead regarded the flow as being subjected to perfectly random fluctua-
tions, with empirically determined average behaviours. This dearth of predictive physical models is
a significant ongoing inconvenience in both theoretical and practical applications.

However, we are not entirely without physical models of wall turbulence. In 1961, Townsend
postulated that the logarithmic region of turbulent flows along walls could be modelled as a
three-dimensional distribution of self-similar eddying motions whose sizes scale with their distance
from the wall.1 This, he reasoned, follows from the fact that the rate of dissipation within the fluid
scales with its distance from the wall. The size of each eddy was therefore proportional to its
distance from the wall, and in this loose sense, the eddies could be said to be “attached” to the wall.
This has come to be known as the attached eddy hypothesis. The great advantage of the attached
eddy hypothesis is that it replaces the many scales of swirling motions with a single eddy motion
and allows a consideration of the statistics that derive from all three components of velocity. In this
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way, the attached eddy model is unique, and provides insights into scaling behaviour for changing
Reynolds number, amongst other trends.

Townsend was able to produce physical predictions from the attached eddy model. In order
to do so, however, he had adopted a prescribed distribution of eddy sizes that produced a constant
Reynolds shear stress.2 Using this model, Townsend was able to derive the second order moments
of the velocity fluctuations. If u, v , and w represent the velocity fluctuations in the streamwise,
spanwise, and wall-normal dimensions, respectively, Townsend found that



u2�+ = B1 − A1 log

( z
δ

)
, (1a)



v2�+ = B1, v − A1, v log

( z
δ

)
, (1b)



w2�+ = B1,w, (1c)

where the angled brackets indicate ensemble averages. The superscript + indicates that the quan-
tities have been scaled according to viscous wall-units. The distance from the wall is represented
by z, and δ denotes the maximum distance from the wall at which the flow is dominated by the
presence of the attached eddies. All of the As and Bs above are constants.

This result only applies where the flow is sufficiently close to the wall to feel its presence,
and yet sufficiently distanced that the effect of viscosity is negligible, except at the smallest scales.
Therefore, these formulations essentially apply in the inner portion of the inertially dominated
region, referred to most commonly as the “log region.”

Tellingly, this result contradicted the classical view of wall turbulence, since it implies that the
kinetic energy will vary through the log-region. Conversely, the classical view assumed that the
kinetic energy would be constant.3,4

The nature of the log region, and the coherent structures within it, has been reviewed exten-
sively in recent years by various authors.5–9 While differing interpretations remain with regard to
the causal relationships between the flow features and coherent structures (in particular, vortical
structures), a consensus appears to have emerged that the flow in the log region is associated
with a hierarchy of eddying motions, which scale with their distance from the wall, in line with
Townsend’s original hypothesis.1

Moreover, experiments at high Reynolds number10–15 and recent direct numerical simulations16

report strong support for the logarithmic behaviours for the profiles of the velocity fluctuations, as
given in (1).

The attached eddy hypothesis has also been used to derive the flow profile for the mean flow for
wall-flows by Perry and Chong17 and Perry, Henbest, and Chong.18 In the streamwise direction, they
obtained the classical logarithmic law of the wall

⟨U⟩+ = 1
κ

log
�
z+
�
+ C, (2)

where κ is the von Kármán constant, and C is a parameter that depends on the roughness of the
surface and is assumed to be a constant for smooth-walled flows. There has been some debate as
to whether κ is truly a constant or is in fact dependent on the Reynolds number.2,19 This will be
investigated in Sec. III B.

Further studies extended the attached eddy hypothesis to include wake effects and streamwise
pressure gradients.20–22 These studies associated the attached eddies with the “wall structure,” and
the physically detached eddies with the “wake structure.” It was found that the presence of both
types of eddies is necessary in order to obtain correct quantitative results for all components of the
Reynolds stress. (The derivation that will be given in this work disregards the wake region and will
therefore be analogous to the derivation by Perry and Marusic21 with their T, w = 1.)

Further refinements of the attached eddy work were carried out by Marusic.23 This was in
order to account for experimental evidence indicating that the streamwise velocity autocorrelation
length in the log region extends over several boundary layer thicknesses in length. This was also
consistent with the PIV experiments of Adrian et al.24 who reported the tendency of attached-type
eddies to align themselves in “packets” in the streamwise direction, rather than being perfectly
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randomly and independently positioned. This naturally results in a series of long streamwise streaks
of high and low streamwise velocity forming in the log region. Further experimental evidence has
been found for the existence of such organised motion by various authors.25,26 Marusic also showed
that using packets of hairpin-type vortices as the representative eddy structure produced results that
quantitatively agreed with the autocorrelation statistics.23 A review of the attached eddy model is
also presented by Tardu.27

In more recent work, Meneveau and Marusic28 extended Eq. (1) for the streamwise component
to higher order even-numbered moments. However, in order to do so, they had assumed that the
velocity distribution is Gaussian. This allows the central limit theorem to be applied to the velocity
field. The moments so derived were�

u+
�2p1/p

= Bp − Ap log
( z
δ

)
, (3)

where Bp and Ap are constants, and the Ap relates to each other via

Ap = [(2p − 1)!!]1/p A1, where n!! ≡ n(n − 2)(n − 4) . . .1.
Furthermore, using high Reynolds number data, they showed that the dependence of high-order
even moments on z/δ in the logarithmic layer follows (3), but the prefactors Ap fall below the
Gaussian prediction. (Deviations from Gaussian predictions are to be expected since the central
limit theorem only strictly applies in the limit as the number of eddies present approaches infinity
and when their contributions are assumed to be statistically independent.)

We will subsequently show that the higher order even-numbered moments of the streamwise
and spanwise velocity will obey (3), in the asymptotically high Reynolds number limit. We will also
show that the wall-normal velocity fluctuations entirely fail to display such Gaussian behaviour.

In this work, we revisit the attached eddy hypothesis and adopt a more rigorous physical and
mathematical model for turbulent flows in the log-region than has been done previously. In doing
so, we reconsider the physical theory and basic assumptions upon which the attached eddy model
is based, and seek to minimize the physical assumptions necessary for deriving the properties of
the flow from the model. Furthermore, while previous studies had only derived the first and second
order moments, this analysis has made it possible to derive moments of the velocity to any order.
The natures of the higher order moments are somewhat counter-intuitive, in that they could not be
approximated or guessed by extrapolating the known behaviours of the lowest order moments.

To this end, we utilise Campbell’s theorem, which was first applied to the attached eddy
hypothesis by Marusic,23 following the suggestion of Adrian.41 As in the works of Townsend, Perry
and Chong, and others, we model the flow as a random distribution of geometrically similar eddies,
whose locations are independent of each other. However, those previous studies have also assumed
that the distribution of eddy sizes takes a specific form, chosen for convenience. They have further
assumed a priori that any combined effects of eddies of differing heights will be negligible. In
Sec. II A, we show that the eddy size distribution does in fact follow from simple physical princi-
ples. We also subsequently demonstrate mathematically that it is indeed the case that the combined
effects of eddies of different sizes do not affect the moments of the velocity.

The model and its assumptions are formulated in Sec. II. A derivation of Campbell’s theorem is
given in Appendix B. From this, the logarithmic laws and related properties of the flow have been
derived in Sec. III.

II. MATHEMATICAL FORMULATION

The model presented here pertains to the log-region and is therefore inertial and inviscid. Vis-
cosity is not considered, except in that it sets the lower bound of the log-region. (In other words, it
sets the scale of the smallest attached eddy.) As a result, the standard no-slip boundary conditions
cannot be applied. Instead, we apply the method of images. Each eddy is paired with an identical
mirror eddy on the other side of the wall. In this way, we guarantee non-penetration of the flow
through the wall.
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FIG. 1. Sketch of the streamwise velocity field associated with a typical representative eddy. The red and blue regions
represent, respectively, isocontours of streamwise velocity in excess of and below the mean velocity. The eddy and its induced
velocity field have only one length scale (h).

The model is intended to determine the statistical properties of a statistically steady-state flow,
and makes no reference to the dynamics of the flow. However, it is noted that recent studies
by Sharma and McKeon29 and Moarref et al.,30 who extract attached-eddy type modes from the
Navier-Stokes equations, suggest that progress in incorporating attached eddies with the equations
of motion may be promising. Moreover, Klewicki31,32 has shown that a self-similar hierarchical
structure, which is central to the attached eddy model, is consistent with invariant solutions associ-
ated with the leading order mean dynamics. However, we note again that, accounting for dynamical
behaviour is beyond the scope of the present work and the Navier-Stokes equations are not used in
the model.

In addition to the conditions above, the model is based upon the following assumptions:

1. The flow field is modelled by a hierarchy of eddies, each of which extends from the wall into
the flow, and whose dimensions scale with its distance from the wall. These eddies take the
form of a spatially bounded structure within the velocity field of the flow.

2. The eddies are geometrically self-similar, having an identical shape regardless of their size (so
that the velocity fields corresponding to each are identical once scaled by their heights).

3. The eddies are perfectly randomly placed upon the wall and their locations are entirely inde-
pendent of each other. Importantly, this means that the eddies are not prevented from overlap-
ping and two or more eddies may occupy the same region of space. (Available spatial datasets
of velocity fields from particle-image-velocimetry and direct-numerical simulation indicate
that eddies may indeed overlap in this way.24,33)

4. The total flow field is the sum of the velocity fields corresponding to each individual eddy (plus
a potential flow to recover the freestream velocity).

For the mathematical description, we begin by considering Uone eddy(x − xe,h), the flow field
at x induced by a representative eddy of height h located at xe = (xe, ye,0). An example of the
streamwise velocity field associated with one such representative eddy is illustrated in Figure 1. It
is noted that such an eddy can correspond to either a single hairpin-type vortex or a “packet” of
such vortices (as shown in Figure 1), or other possible physical scenarios. (It is noted that in the
following, for the modelling of the velocity statistics, the specification of an “eddy” only requires
the specification of the velocity field Uone eddy.)

As Townsend argued, the flow in the log-region will be inviscid, which implies that the friction
velocity is the native velocity scale for this system.2 The native length scale is simply the height of
the eddy. It follows from this that the velocity field corresponding to an eddy of any size can be
expressed as

Uone eddy = Q
(x − xe

h

)
. (4)

Note that conventional notation would denote U, as we have defined it here, by U+ (and this is how
it has been denoted in the Introduction). For simplicity, we omit the + notation from here on.

Since the total velocity at any location within the log region will simply be the superposition
of the velocities induced by each of the individual eddies, if we knew the locations and heights of
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every eddy, the overall flow field would simply be

U(x) =

k

Q
(x − xek

hk

)
, (5)

where the xeks and hks refer to the locations and heights of each individual eddy. Of course, we
could never know the locations and heights of every eddy present within the enigmatic chaos of a
turbulent flow. We therefore consider only the statistical behaviour of large numbers of such eddies.

When the xeks are randomly distributed according to Poisson statistics, the sum in (5) is a
generalization of the classical “shot noise” process describing the emission of electrons at random
points in time. In the present case, the points are randomly and uniformly distributed over the
(x, y,0) plane.

A. The distribution of eddy sizes

Here, we wish to derive P(h), the probability density function for the height of an eddy. To
begin, we note that the velocity fields corresponding to each individual eddy are geometrically
identical and unaffected by the presence of nearby eddies. They therefore may each be considered
independently. Because each eddy is characterised by its height, all spatial dimensions of the eddy
scale with h, and the average volume of space per eddy is therefore proportional to h3.

P(h) will be proportional to the density of the eddies, where we can define the density as the
expected number of eddies, Ne, to be found within a square patch of wall of length and width ℓ,
whose heights are between ℓ and ℓ + dℓ, divided by this volume. All dimensions of this volume
scale with distance from the wall. (It is, of course, required that both ℓ and ℓ + dℓ are between hmin

and hmax.) That is,

P(h) ∝ Ne

ℓ2dℓ
. (6)

In addition, if we define Ve as the proportion of the volume of a single eddy that is located within
ℓ2dℓ, then

Ne =
ℓ2dℓ
Ve

. (7)

However, for our geometrically similar eddies, Ne must be invariant for any value of h ∝ ℓ for any
wall-normal position in the log region. To help illustrate this, a schematic is shown in Figure 2 using
an analogous discrete system of attached eddies, adapted from Perry and Chong.17 Here, the volume
(represented by the blue rectangles) has dimensions that scale with its distance from the wall, and
contains a fixed fraction of eddies within that domain because the eddy heights (and their average
spacing in the plane of the wall) also scale with their distance from the wall. This also applies in
the continuous case as there is only one length scale. Consequently, for Ne to be invariant for h ∝ ℓ
requires

Ve ∝ h3, (8)

and therefore, Ve is a fixed fraction of the volume of an individual eddy.
From (6), (7), and (8), we see that the probability density function will be

P(h) ∝ 1
h3 . (9)

Since each eddy has a size between hmin and hmax, we can normalise P(h) to

P(h) = 2
�
h−2

min − h−2
max

�−1 1
h3 . (10)

This value of P(h) has been implicitly used in the prior work of Townsend, Perry and Chong, and
others. However, until now, this distribution of eddy heights has merely been assumed for conve-
nience. Here, we see that it is in fact mathematically precise for randomly located eddies that are
geometrically similar and scale with their distance from the wall. The same result is found to also
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FIG. 2. Symbolic representation for an analogue discrete system of attached eddies. A self-similar pattern is observed for
the blue rectangles, which indicate volumes with dimensions that scale with its distance from the wall and contain a fixed
fraction of eddies within the domain at all heights.

follow for a discrete distribution of eddy heights, as previously described by Perry and Chong,17 and
this is demonstrated in Appendix A.

B. The statistical properties of the flow and the eddy contribution functions

The attached eddy model has previously been used to derive the mean velocity profile and the
second order moments. Here, we place these derivations on a more rigorous mathematical base and
extend the derivation to include all higher order moments of the velocity. To do this, we employ
Campbell’s theorem,34 which was originally proposed for the study of the statistical properties of
thermally agitated electrons, whose times of arrival at an anode are perfectly random. Here, we use
Campbell’s theorem to study the velocity field corresponding to a forest of eddies that are randomly
distributed on a plane. To this end, a proof of the theorem for a randomly distributed forest of eddies
of varying heights on a two-dimensional plane is given in Appendix B.

Due to the spatial self-similarity of the eddies, it is convenient to scale all eddies with their
heights, and hence we define a height-dependent position vector

X ≡ (X,Y, Z) def
=

x
h
. (11)

We can now define the eddy contribution functions, Ik,l,m(Z), which are integrals over the X-Y
plane for Q(X) and its multiples. They are defined by

Ik,l,m(Z) def
=

∞
−∞

Qk
x (X)Ql

y (X)Qm
z (X) dX dY, (12)

where Qx, Qy, and Qz are the orthogonal components of Q, and k, l, and m are positive integers
or zero. These eddy contribution functions are a similar concept to the eddy intensity functions
introduced by Townsend.2 The important differences between the two are that they have been scaled
differently, and that Townsend’s eddy intensity functions are only defined for second order velocity
moments (that is, for where k + l + m = 2). Therefore, the functions I2,0,0, I0,2,0, I0,0,2, and I1,1,0 in
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this work would, respectively, be proportional to the functions I11, I22, I33, and I13 as defined on page
153 of Townsend’s book.2

For convenience, we now define a new set of functions, λk,l,m, which we call the cumulants of
the velocity:

λk,l,m(z) def
= β

hmax
hmin

Ik,l,m(Z)h2P(h) dh, (13)

where β represents the average density per unit area of eddies (of all sizes) at the wall. The eddies
have been assumed to range in size from hmin to hmax. We can therefore associate hmax with δ, the
boundary layer thickness, which here corresponds to the height of the log region. Hence,

hmax ∝ δ. (14)

It will become necessary subsequently to recognise that β can be related to the number of eddies
present, N , and the surface area of the wall they inhabit, L2, via

β ≡ N
L2 . (15)

Note that we cannot take the Ik,l,m(Z) functions outside the integrals in (13), since Z is itself a func-
tion of h. These equations have all been derived in the appendix. Since we are most interested in the
streamwise velocity, we introduce a shorthand notation for cumulants that only entail streamwise
terms

λn ≡ λn,0,0. (16)

The derivation in the appendix demonstrates that Campbell’s theorem allows the statistical prop-
erties of the flow to be determined from the velocity field corresponding to a single representative
eddy. This is ultimately because the combined effects of multiple perfectly randomly placed eddies
will contribute to the moments of the total velocity, such as ⟨U2⟩, but not to the moments of the ve-
locity fluctuations, such as ⟨u2⟩. This can be seen most clearly in the derivation previously presented
by the authors.35 (We must stress that these are not assumptions we have made within the model,
but are instead both consequences of the assumptions that have been made at the beginning of this
section.)

The mean velocity is given by

⟨U⟩ = λ1, ⟨V ⟩ = λ0,1,0, ⟨W ⟩ = λ0,0,1. (17)

Throughout this work, angled brackets are used to denote ensemble averages. Specifically, these are
averages over all of the possible locations of each of the eddies present.

These equations could alternatively be expressed in terms of the velocity field emanating from a
single eddy via

⟨U⟩ = β

hmax
hmin

P(h)
∞

−∞

Q
( x

h

)
dx dy dh, (18)

thus giving an expression for the average velocity of a turbulent flow in terms of the velocity field
corresponding to just a single eddy. This is relatively simple to derive since U is a linear quantity,
which can therefore be split into a series of components. Velocity correlations between two or more
eddies will therefore not affect ⟨U⟩. The same cannot be said for non-linear quantities, such as the
velocity squared or the Reynolds shear stress. It is in order to derive these, and higher order mo-
ments of the velocity fluctuations, that we introduce the use of Campbell’s theorem to the attached
eddy hypothesis in this work.

But first, we must consider non-linear quantities, and how and whether the combined effects
of the velocities of two or more eddies may affect such quantities. We define a fluctuating velocity,
u(x) as a deviation away from the mean velocity via

u(x) = U(x) − ⟨U(x)⟩. (19)
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The second order moments of the velocity fluctuations are related to the cumulants via

⟨u2⟩ = λ2, ⟨v2⟩ = λ0,2,0, ⟨w2⟩ = λ0,0,2. (20)

We will demonstrate in Sec. III that (17) returns the log-laws of Perry and Chong17 given in (2)
and (20) returns the Townsend2 relations given in (1). The derivations of the first and second order
moments given in (17) and (20) are relatively straightforward, and a derivation has previously been
given by Marusic and Woodcock.35

In order to derive the higher order moments of the velocity fluctuations, we have introduced a
new methodology, which we detail in Appendix B. There is no simple closed form function which
relates ⟨un⟩, ⟨vn⟩, and ⟨wn⟩ to the cumulants for arbitrary n. However, we can derive such relations
for any specific n, and the procedure for doing so is described in Appendix B.

The following relations have been derived from Eqs. (B14) and (B16) of the appendix. The
higher order powers of the fluctuating velocities relate to these cumulants via

⟨u3⟩ = λ3, (21a)

⟨u4⟩ = λ4 + 3λ2
2, (21b)

⟨u5⟩ = λ5 + 10λ2λ3, (21c)

⟨u6⟩ = λ6 + 15λ2λ4 + 10λ2
3 + 15λ3

2, (21d)

⟨u7⟩ = λ7 + 21λ2λ5 + 35λ3λ4 + 105λ2
2λ3, (21e)

⟨u8⟩ = λ8 + 28λ2λ6 + 56λ3λ5 + 35λ2
4 + 210λ2

2λ4 + 280λ2λ
2
3 + 105λ4

2, (21f)
⟨u9⟩ = λ9 + 36λ2λ7 + 84λ3λ6 + 126λ4λ5 + 378λ2

2λ5 + 1260λ2λ3λ4 + 280λ3
3

+1260λ3
2λ3, (21g)

⟨u10⟩ = λ10 + 45λ2λ8 + 120λ3λ7 + 210λ4λ6 + 630λ2
2λ6 + 126λ2

5 + 2520λ2λ3λ5

+ 1575λ2λ
2
4 + 2100λ2

3λ4 + 3150λ3
2λ4 + 6300λ2

2λ
2
3 + 945λ5

2, (21h)

and similarly for ⟨vn⟩ and ⟨wn⟩.
The paradigms for a selected number of cross-correlated averages are

⟨uv⟩ = λ1,1,0, (22a)
⟨uw⟩ = λ1,0,1, (22b)

⟨u2w⟩ = λ2,0,1, (22c)

⟨u2v⟩ = λ2,1,0, (22d)
⟨uvw⟩ = λ1,1,1, (22e)

⟨u2v2⟩ = λ2,2,0 + λ2,0,0λ0,2,0 + 2λ2
1,1,0, (22f)

⟨u2w2⟩ = λ2,0,2 + λ2,0,0λ0,0,2 + 2λ2
1,0,1, (22g)

⟨u3v⟩ = λ3,1,0 + 3λ1,1,0λ2,0,0, (22h)

⟨u2vw⟩ = λ2,1,1 + λ0,1,1λ2,0,0 + 2λ1,0,1λ1,1,0. (22i)

C. Comparison to Gaussian velocity statistics

It has previously been shown that perfectly random eddies will, in the large β limit, approach
perfectly Gaussian behaviour,28 and that their even moments will behave according to

lim
β→∞



u2p�1/p

= [(2p − 1)!!]1/p 
u2� , (23)

where n!! ≡ n(n − 2)(n − 4) . . . 1. It can be shown by inspection that these concur with the results
given in (21). This we can easily discern from the fact that every λk,l,m is proportional to β, and so
at large β, the right hand side of (21) will always be dominated by the highest powered term. This,
for even powers, will always be the term containing only a power of λ2.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.250.144.144 On: Wed, 21 Jan 2015 05:42:09



015104-9 J. D. Woodcock and I. Marusic Phys. Fluids 27, 015104 (2015)

It is clear from (13) that according to this present model, λ4 must be positive. It follows there-
fore that the “flatness” (which is defined as ⟨u4⟩/⟨u2⟩2) must be greater than 3. However, a survey
of experimental data shows that the flatness in the streamwise direction is in fact less than 3 (this is
referred to as sub-Gaussian behaviour28). From this, we can only conclude that λ4 must be negative
in real turbulent flows. It is possible that the placement of eddies in real turbulent flows is not
perfectly random, and that instead, the locations of nearby eddies will interact nonlinearly. This may
explain the sub-Gaussian behaviour of the streamwise velocity fluctuations. This, however, remains
speculation and is beyond the scope of this present work.

The spanwise and wall-normal velocity fluctuations, on the other hand, show reliably super-
Gaussian behaviour (i.e., their flatness is greater than 3),36 which is in line with the results of this
present model. We will show in Sec. III B that the wall-normal velocity fluctuations will never
follow a Gaussian distribution, regardless of the Reynolds number. This results mathematically
from the fact that the fluid cannot flow through the wall.

As with all physical models, the attached eddy model is not intended to predict every aspect
of real turbulent flows, but only to capture certain flow behaviours. Specifically, this model seeks to
capture the statistical behaviour of the inertial scale, energy-containing, motions in the log region.
Where models such as these succeed and fail to capture the behaviours of real flows can be instru-
mental in determining the nature of the flows themselves. The implications of these results will be
elaborated upon in Sec. IV.

III. VELOCITY STATISTICS

We may now use the attached eddy model to derive the statistical properties of the flow. If
we know the form that the attached eddies will take, then we can derive Q(x/h), the velocity field
corresponding to a single eddy, and from there we can derive the eddy contribution functions and
the cumulants and moments of the velocity. However, it is not necessary to know the exact shape
that the eddies will take in order to derive information about the functional form of the moments of
the velocity. We begin this analysis, therefore, by deriving as many properties of the flow as possible
without reference to the specific shape of the eddy, or its corresponding velocity field Q(x/h).

A. General flow properties

We will now demonstrate that various properties of the moments of turbulent flows can be
derived from the attached eddy hypothesis without reference to the exact shape of the eddy. To this
end, we must first recognise that the velocity field associated with an eddy will be negligible far
beyond the height of the eddy. (This is elaborated upon in Appendix C.) In other words,

Q
( x

h

)
≈ 0, for z > αh (α > 1), (24)

where α is a constant which is intended to allow the velocity field corresponding to a particular eddy
to extend slightly beyond the height of the eddy. Of course, Q(x/h) is a continuous function, and
so (24) places restrictions on the shape of Q(x/h) at higher values of z/h. Importantly, this means
that Q must begin to decrease at some point as z/h increases. This also strongly suggests that a
significant contribution to U(x) is likely to come from where z/h is closer to zero.

Because Q is assumed to be non-zero only for z/α ≤ h ≤ hmax, we need not integrate from hmin

to hmax in (13) if z > αhmin. This is because if Q is zero at a certain z/h, then from (12), we can see
that so too will be Ik,l,m. Given this, (13) becomes,

λk,l,m(z) =




β

hmax
z/α

Ik,l,m
( z

h

)
h2P(h) dh, for z > αhmin,

β

hmax
hmin

Ik,l,m
( z

h

)
h2P(h) dh, for z ≤ αhmin.

(25)
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If we take the z > αhmin case in the above equation, after substituting (10) for P(h), it can be
rearranged using (11) to be

λk,l,m(z) = 2β
�
h−2

min − h−2
max

�−1
α

z/hmax

Ik,l,m(Z)dZ
Z

. (26)

(For reference, the integral above is equivalent to the expression adopted by Townsend,2 on page
154, for λ1,0,1.)

We can now use this analysis to find the dominant term in each λk,l,m(z). This is the most we
can determine about the exact nature of any λk,l,m(z) without an extensive model of Q.

The corollary to (24), and the fact that Ik,l,m will diminish at higher Z , is that a significant
contribution to λk,l,m will emanate from around Z ≃ 0. It is therefore reasonable to expand Ik,l,m(Z)
in a Taylor series around Z = 0. This results in

Ik,l,m(Z) = Ik,l,m(0) + Z
dIk,l,m(0)

dZ
+

Z2

2!
d2Ik,l,m(0)

dZ2 +
Z3

3!
d3Ik,l,m(0)

dZ3 + · · ·. (27)

Substituting this into (26) and integrating gives

λk,l,m(z) = − 2β
h−2

min − h−2
max


log

(
z

hmax

)
Ik,l,m(0) + z

hmax

dIk,l,m(0)
dZ

+
1

2! 2

(
z

hmax

)2 d2Ik,l,m(0)
dZ2 + · · ·


+ Bk,l,m, (28)

where the Bk,l,m’s denote constants.
If we restrict ourselves to the region in which z ≪ hmax, we can see that it will be the lowest

ordered non-zero term in the Taylor series expansion that dominates the sum in (28). The dominant
behaviour of λk,l,m(z) will therefore depend on whether Ik,l,m, and its derivatives, are zero at z = 0.
It is therefore necessary to explore the nature of Ik,l,m(Z) in order to derive the profiles of any
moments of the velocity.

Since this model covers only the log-region, it does not extend to the wall. For that reason, the
standard no-slip boundary condition does not apply. Instead, following the approach of Townsend,2

we apply the method of images. This entails pairing each eddy with a corresponding “mirror” eddy
beneath the wall, so that the flows above and below the wall will obey

(U(x, y,−z),V (x, y,−z),W (x, y,−z)) = (U(x, y, z),V (x, y, z),−W (x, y, z)). (29)

This ensures that the flow will not penetrate through the wall. Note too that the average streamwise
flow at the wall, from the attached eddies, will be negative. The reason for this is that the velocity
field has effectively been derived from the vorticity field via the Biot-Savart integral. This will
inevitably overlook a constant of integration,37 which is the irrotational portion of the flow. In a real
turbulent flow, ⟨U⟩ would be positive at the boundary between the near-wall viscous region and the
log region, and thus, the addition of an irrotational streamwise flow of magnitude U∞/uτ is required.
The effect of the eddies will then be to reduce the average flow rate against this irrotational flow.

We can see then that the boundary conditions, at z = 0, must take the form

⟨U⟩(0) = (U0,V0,0), (30)

where U0 and V0 are as yet unknown constants. The wall normal velocity must be universally zero
in order to satisfy (29). The wall-normal contribution of a single eddy, Qz, must also be zero at
the wall, because the wall-normal contributions of the eddy and its corresponding mirror eddy must
cancel each other out at the wall.

We would naturally expect V0 to be zero, via symmetry, if the eddies are facing the streamwise
direction and are symmetric in the spanwise direction. We would not, however, expect Qy(X) to be
universally zero, even at the wall, since eddying motions must exist in at least two dimensions.

The boundary conditions acting on Q(X) must therefore take the form

Q(X,Y,0) = (Qx,0(X,Y ),Qy,0(X,Y ),0), (31)
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where Qx,0(X,Y ) and Qy,0(X,Y ) are functions that will depend on the exact nature and shape of
the eddies. We now have enough information to make a general statement about the boundary
conditions applying to all of the eddy contribution functions at Z = 0. We can determine which of
Ik,l,m and its derivatives are expected to be zero by inspection of (12).

By taking into account the fact that it is only the wall-normal velocity, w, that is expected to
be zero at z = 0, we can see that if λk,l,m has no wall-normal dependence (i.e., m = 0), it will be
dominated by a logarithmic term. Conversely, if λk,l,m has a wall-normal dependence, it will be
dominated by a term of order m. If we assume that all terms apart from the dominant term and the
constant are small, we can represent this via

λk,l,m ≈




− 2β
h−2

min − h−2
max

Ik,l,m(0) log
(

z
hmax

)
+ Bk,l,m, if m = 0,

− 2β
h−2

min − h−2
max

1
m! m

dmIk,l,m(0)
dZm

(
z

hmax

)m
+ Bk,l,m, if m , 0.

(32)

This implies that all moments of the streamwise and spanwise velocities will contain logarithmic
terms, while all moments of the wall-normal velocity will have a power-law dependence at suffi-
ciently high Reynolds number. (It should be noted, however, that as we are considering the flow
where z ≪ hmax, we would expect the constant Bk,l,m to dominate over all powers of z/hmax, but
not over the logarithmic terms.) It also implies that the mathematical reason why the wall-normal
fluctuations follow a power-law, rather than a logarithm, is because the wall-normal flow must be
universally zero at Z = 0.

These results concur generally with the recent work of Stevens, Wilczek, and Meneveau, who
computed the higher order moments, in all three directions, via a large eddy simulation.38

One caveat must be made here: as we have stated, if the eddies face the streamwise direction,
and are symmetric in the spanwise direction, we would expect that I0,1,0(0) = 0. It would be possible
(but unlikely) for Ik,l,0(Z) to be zero for some other k and l (and similarly for the derivatives of
Ik,l,m). Whether it was zero or not would depend on the shape of the eddy.

Again, we would expect that for streamwise-facing, spanwise-symmetric eddies, I0,1,0 = 0,
and therefore, the spanwise velocity profile, ⟨V ⟩, will be zero, rather than logarithmic. We must
countenance the possibility that some other Ik,l,ms (or their derivatives) could also be zero.

However, where any of the Ik,l,ms for m , 0 are zero, they are so because of the shape of the
eddy. The m = 0 cases, on the other hand, must be zero because of the impermeability of the wall.

(It should be noted that this does not imply that all moments with wall-normal components
will be dominated by a power-law. For example, in Eq. (22), we can see that ⟨u2w2⟩ will have a
dependence on λ2,0,0, which is logarithmic.)

1. Reynolds number dependence

In this work, we define the Reynolds number based upon the range of eddy scales present
within the flow

Reτ = 100
hmax

hmin
. (33)

This follows from the classically adopted assumption that the Kline scaling39 applies, where
h+min = 100. Alternatively, if one adopts h+min = 2.6Re1/2

τ , following Klewicki,32 the Reynolds number
would be

Reτ =
(
2.6

hmax

hmin

)2

. (34)

However, the qualitative results using either (33) or (34) throughout this paper would be the same.
Using the Reynolds number defined in (33), we can express the cumulants given in (32) in

terms of Reτ. To do so, we must express β in terms of hmin and hmax. To this end, we must express N ,
the number of eddies present, in terms of hmin and hmax.
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Since the placement of the eddies is a Poisson process, we can infer N from the expected
distance from a single eddy to its nearest neighbour in the positive x and y directions. The spatial
self-similarity of the eddies affects not only their heights and intensities but also the average dis-
tances between them. However, it also follows from the fact that the placement of eddies is a
Poisson process that the expected distance to each subsequent eddy will depend only on the height
of the subsequent eddy (and not the previous eddy).

Hence, we now define a new constant kx, such that the expected distance to the next-closest
eddy in the positive x-direction will always be kxh if the height of the next-closest eddy was known
to be h. (More specifically, kxh represents the distance in a strip of height h′ to the nearest eddy
of height between h and h + dh divided by h′ and dh.) For the spanwise direction, we define an
analogous constant ky.

If the nearest eddy in the positive x-direction was known to be of height h1 and the nearest
eddy in the positive y-direction was known to be of size h2, then we would know that the number of
eddies present, on a plane of area L2, would be expected to be

Nh1,h2 =
L2

(kxh1)(kyh2) . (35)

We can now infer N from the probability density of the eddy heights via

N =

hmax
hmin

Nh1,h2P(h1)P(h2) dh1 dh2. (36)

By substituting (10) into the above, and integrating, we find that

N =
4
9

L2

kxky

(
1 −

(
hmin
hmax

)3
)2

h2
min

(
1 −

(
hmin
hmax

)2
)2 . (37)

By using the fact that β ≡ N/L2, we can rewrite β as

β =
4
9

1
kxky

(
1 −

(
hmin
hmax

)3
)2

h2
min

(
1 −

(
hmin
hmax

)2
)2 . (38)

By substituting this β into (32), we can express the cumulants in terms of hmin and hmax. If we
then substitute the Reynolds number for hmin and hmax using (33), this results in the following for
z ≪ hmax:

λk,l,m ≈




−8
9

1
kxky

�
1 − 106Re−3

τ

�2
�
1 − 104Re−2

τ

�3 Ik,l,m(0) log
(

z
hmax

)
+ Bk,l,m, if m = 0,

−8
9

1
kxky

�
1 − 106Re−3

τ

�2
�
1 − 104Re−2

τ

�3
1

m! m
dmIk,l,m(0)

dZm

(
z

hmax

)m
+ Bk,l,m, if m , 0.

(39)

The cumulants will therefore all display some dependence upon Reτ, but as we shall subsequently
demonstrate in Sec. III B, this Reτ dependence will rapidly diminish as Reτ increases.

2. Computed velocity moments

As has been discussed previously in Sec. II B, if the distribution of eddies were perfectly
Gaussian, all higher order moments of u could be related to ⟨u2⟩ via (23). Furthermore, since the
eddies have been assumed to be perfectly randomly and independently located in this model, their
behaviour must approach Gaussianity as the population of eddies increases. This can be seen easily
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in (21), by the fact that every λk,l,m is proportional to β, and hence, in the high β limit, the dominant
term in (21) will be the highest powered term.

In order to gain a quantitative approximation for the moments of the velocity, and to deter-
mine whether they should be expected to follow a logarithmic profile at higher orders, Biot-Savart
computations were carried out for an assumed typical representative eddy shape (together with
its image in the wall). The procedure is as described previously by Marusic.23 The eddy shape
chosen is as shown in Figure 1, consisting of a single packet of six arch-shaped vortex rods that
are aligned in the streamwise direction in ascending order of height. This arrangement produces
long streamwise streaks of high and low streamwise velocity, consistent with previous experimental
observations of organised motion in the log layer. The individual arch-shaped vortex rods that form
the packet are inclined at an angle of 45◦ to the wall, and the vorticity within the vortex rods is
assumed to decrease exponentially with the distance from the centre of the rod. From the induced
velocity field, we are able to estimate the relative magnitudes of the λk,l,ms, and thereby determine
which terms in (21) can be safely neglected and when.

A comparison of the results obtained for the streamwise velocity moments to their equivalents
in a perfectly Gaussian flow are given in Figures 3 and 4(a).

The results in Figure 3 show that even at Reynolds numbers of order 109, there remains a
noticeable difference between the higher order moments and their Gaussian equivalents. However,
Figure 4(a) shows that such differences do not lead to distinguishable departures from a logarithmic
curve—while the additive constants in Eq. (3) do change for higher-order moments, any changes in
the slopes of the logarithmic formulation are negligible.

For completeness, Figures 4(b) and (c) show comparisons of the Gaussian estimates to the
corresponding computed moments for the representative eddy in Figure 1 for the spanwise and
wall-normal fluctuating velocities, respectively. Figure 4(d) shows the corresponding computed
Reynolds shear stress profile. Like the streamwise moments, the spanwise moments are seen to
follow a logarithmic behaviour for all the even high-order moments. The wall-normal moments are
also distinctly different from the Gaussian estimates. These differences between the Campbell’s and
central-limit theorem estimates are further considered in Secs. III C and III D when discussing the
skewness and flatness statistics.

It should be noted that if a single arch-shaped vortex were chosen as the representative eddy,
rather than the packet of six aligned vortices, a qualitatively similar result is found, albeit with a
less pronounced difference from a perfectly Gaussian flow. We emphasise that the results in Figures
3 and 4 are shown to indicate the functional dependencies of the statistics rather than provide
quantitative predictions. For that, one would likely require an effective decomposition algorithm

FIG. 3. Plots showing the ratio of the even-numbered higher order moments as derived by Meneveau and Marusic using the
central limit theorem to their equivalents derived here via Campbell’s theorem, based on the typical attached eddy depicted
in Figure 1.28 Here, z+ = 100, where it is assumed that Reτ = 100hmax/hmin.
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FIG. 4. (a) Computed moments of order 2p = 2 (◦), 4 (�), 6 (�), 8 (△), and 10 (∗) of streamwise velocity fluctuation
as function of wall-normal distance for attached eddy depicted in Figure 1. Solid lines are based on Campbell’s theorem
(Eq. (21)), and dashed lines are the results due to perfectly Gaussian behaviour (Eq. (23)). (b) and (c), respectively, show
corresponding results for spanwise and wall-normal fluctuating velocities. (d) Corresponding Reynolds shear stress.

used with a suitable numerical or experimental database to extract the precise shape and form of the
representative eddy structure, and this is beyond the scope of the present study.

B. Implications for the von Kármán constant

We can see from (39) that von Kármán’s constant, defined in (2), is given by

1
κ
= −8

9
1

kxky

�
1 − 106Re−3

τ

�2
�
1 − 104Re−2

τ

�3 I1,0,0(0). (40)

This asymptotes to a constant with increasing Reτ, which we denote by κ∞. It is given by

κ∞ = −
9(kxky)
8I1,0,0(0) . (41)

The ratio of von Kármán’s constant to its asymptote is given by

κ

κ∞
=

�
1 − 104Re−2

τ

�3
�
1 − 106Re−3

τ

�2 . (42)

This variation with Reτ is plotted in Figure 5. At high Reτ, (42) asymptotes to
κ

κ∞
= 1 − 3 × 104Re−2

τ +O
�
Re−3

τ

�
. (43)

Figure 5 also shows the result if Eq. (34) was used to estimate Reτ.
Townsend2 (see also Davidson19) argued that the magnitude of κ should be expected to change

with Reynolds number under the attached eddy hypothesis as the ratio of the energy present in
the fluctuations to that present within the mean flow increases. He therefore concluded that any
such variations would be unlikely to be detectable under ordinary circumstances, but would become
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FIG. 5. Von Kármán’s constant as a function of Reτ. Solid and dashed lines correspond to Reτ based on Eqs. (33) and (34),
respectively.

important at extremely large Reynolds numbers. The results here, however, show that while κ does
indeed exhibit a small dependence on Reτ, it rapidly asymptotes to a constant at high Reynolds
numbers, provided hmax ≫ hmin (which would be expected for a fully developed turbulent flow).
From Figure 5, a negligible variation in κ is seen for Reτ > O(104).

If I1,0,0(0), kx, or ky were different for different wall-bounded flows, then von Kármán’s con-
stant would not be universal at high Reynolds numbers. The fact that numerous high Reynolds
number experiments14 support a universal value for κ strongly suggests that kx, ky, and I1,0,0(0)
are also universal constants (with the latter further suggesting that I1,0,0(Z) is a universal for all
Z , meaning that the average shape of the eddies is universal over all smooth walls). Of course, it
remains possible that kx, ky, and I1,0,0(0) vary, but only in such a way that κ∞ remains universal.
However, that would obviously appear to be an intrinsically less likely explanation.

C. The magnitude and Reynolds number dependence of the skewness

The higher order moments can also be related back to the Reynolds number (and hence the
width of the log region). Following the example of Sec. III B, we can use (21) to derive the skewness
for the streamwise, spanwise, and wall-normal velocities, which we denote by Su, Sv, and Sw,
respectively. The skewness values are given by

Su =
⟨u3⟩

⟨u2⟩3/2 , Sv =
⟨v3⟩

⟨v2⟩3/2 , Sw =
⟨w3⟩

⟨w2⟩3/2 . (44)

By inspection of (21), we can see that the skewnesses are

Su =
λ3

λ
3/2
2

, Sv =
λ0,3,0

λ
3/2
0,2,0

, Sw =
λ0,0,3

λ
3/2
0,0,2

. (45)

By substituting (39) into the above, we see that the magnitude of Su decreases gradually with
increasing Reτ due to the logarithmic terms in ⟨u2⟩ and ⟨u3⟩. For Sw, we find that

Sw =
B0,0,3

B3/2
0,0,2

+O *
,

(
z

hmax

)2
+
-

(46)

and hence, it rapidly approaches a constant for z ≪ hmax. Again, it must be noted that while (45)
coupled with (39) would seem to imply that the spanwise skewness should be non-zero, because
the eddies are symmetric in the spanwise direction (except in special circumstances, such as when a
cross flow is present), we would expect I0,3,0 to be zero, and hence the spanwise skewness to also be
zero. It similarly remains perfectly possible for Su to be zero, under the attached eddy model, even
at higher values of z/hmax, since I3(0) may itself be zero or negligible.
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FIG. 6. Plots showing the skewness of the three velocity components calculated using the typical attached eddy depicted in
Figure 1 at z+ = 100, where it is assumed that Reτ = 100hmax/hmin.

1. Computed skewness for typical eddy

We also use the Biot-Savart computations introduced in Sec. III A 2, to gain a quantitative
appreciation for the magnitude of the skewness. The results can be seen in Figure 6.

The spanwise skewness is, as expected, zero. The streamwise skewness approaches the value
of zero with increasing Reynolds number, but again only very slowly. Conversely, the wall-normal
skewness much more rapidly approaches a positive value. This all concurs with the analysis of (45).

D. The magnitude and Reynolds number dependence of the flatness

The derivation of the flatness is of particular interest and allows the attached eddy model to be
compared qualitatively to experimental results. We denote the flatness, in the streamwise, spanwise,
and wall-normal directions by Fu, Fv, and Fw, respectively, where

Fu =
⟨u4⟩
⟨u2⟩2 , Fv =

⟨v4⟩
⟨v2⟩2 , Fw =

⟨w4⟩
⟨w2⟩2 . (47)

Following the example set by the derivation of the skewness, it can be shown that the flatness will be
given by

Fu = 3 +
λ4

λ2
2

, Fv = 3 +
λ0,4,0

λ2
0,2,0

, Fw = 3 +
λ0,0,4

λ2
0,0,2

. (48)

By substituting (39) into the above, we see that the magnitudes of Fu and Fv approach a value of 3
gradually from above with increasing Reτ. Conversely, Fw will obey

Fw = 3 +
B0,0,4

B2
0,0,2

+O *
,

(
z

hmax

)2
+
-

(49)

and so will rapidly approach a constant greater than 3.
If the distribution were perfectly Gaussian, the flatness would be exactly 3. However, from the

definition of λk,l,m given in (13), and the definition of Ik,l,m given in (12), we can see that λ4, λ0,4,0,
and λ0,0,4 must be finite and positive.

According to this present model, therefore, the flatness must be universally super-Gaussian.
However, experimental results up to Reτ = 22 000 indicate that in the log region Fu ≈ 2.8, Fv ≈ 3.4,
and Fw ≈ 3.4.36 Therefore, the attached eddy results for the spanwise and wall-normal flatnesses
qualitatively agree with the observed super-Gaussian behaviour. However, the results for the stream-
wise component do not, since the experiments have found sub-Gaussian behaviour. This limitation
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FIG. 7. Plots showing the flatness of the three velocity components calculated using the typical attached eddy depicted in
Figure 1 at z+ = 100, where it is assumed that Reτ = 100hmax/hmin.

has previously been discussed by Meneveau and Marusic,28 and requires the model to be modified
accordingly.

1. Computed flatness for typical eddy

We obtain a quantitative approximation of the flatness using the Biot-Savart computations
introduced in Sec. III A 2. The resulting flatness can be seen in Figure 7.

As we can see, the streamwise and spanwise flatnesses only approach 3 gradually, and remain
appreciably greater than 3 at all physically realistic Reynolds numbers. This means, of course, that
while the spanwise flatness concurs qualitatively with experimental results, the streamwise flatness
remains starkly different. This therefore demonstrates a drawback of the present model and remains
the focus of future work.

The wall-normal flatness, by contrast, relatively quickly approaches a value greater than 3. This
heavily contrasts with Gaussian behaviour, but agrees qualitatively with experimental results and
the observed intermittent nature of the w signal in wall-bounded flows.

IV. CONCLUSIONS

Townsend’s attached eddy hypothesis has become a well-known theory for the logarithmic re-
gion, where the flow is modelled at the energy-containing scales by a “forest” of self-similar eddies
that scale with their distance from the wall and are randomly positioned in the plane of the wall.
Using this model, previous studies have been able to derive flow behaviours such as the logarithmic
law of the wall and the second-order moments of the velocity fluctuations (1), (2). Here, we revisit
the attached eddy model and aim to provide a more rigorous physical and mathematical basis for the
analysis, leading to a reduction in the number of heuristic assumptions that were previously used.
The new analysis employs an extended version of Campbell’s theorem and allows us to use the
attached eddy model to derive the moments of the velocity to any order and all cross-correlations
between the three velocity components. The results include support for the recent findings of Mene-
veau and Marusic28 that all even-ordered moments of the streamwise velocity exhibit a logarithmic
dependence on the distance from the wall.

As with earlier applications, our work in effect models the flow via the velocity field associated
with a single representative eddy. In order to derive the functional forms of the moments of velocity,
it is not necessary to assume the shape of the representative eddy (subject to unknown coefficients).
However, the addition of an analysis based upon a typical velocity field for the representative eddy
has allowed us to ascertain how similar the flow is to perfectly Gaussian behaviour.
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This model predicts that all velocity fluctuations at finite Reynolds number will be super-
Gaussian in behaviour (i.e., flatness is greater than 3), with the streamwise and spanwise compo-
nents approaching Gaussian behaviour asymptotically. The wall-normal fluctuations, however, are
shown to remain super-Gaussian at all Reynolds numbers with a positive and finite skewness. (This
is a notably different behaviour from that which would be predicted by the use of the central limit
theorem, as shown by Meneveau and Marusic.28) In the spanwise and wall-normal cases, this agrees
with experimental results. Conversely however, experiments have also shown the streamwise fluctu-
ations to be sub-Gaussian. This strongly suggests that the coherent structures that form within real
turbulent flows may not be distributed perfectly randomly, but instead, their locations will depend in
some way upon the locations of nearby eddies. This remains the focus of future work.

This model has also shed light on the nature of von Kármán’s constant in the context of the
attached eddy hypothesis. There is presently some debate over whether it is truly a constant, or
whether it in fact is a function of the flow’s properties.2 We find here that von Kármán’s constant
does in fact depend very weakly upon the Reynolds number, but that it asymptotes very rapidly to a
constant as the Reynolds number increases.
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APPENDIX A: ANALOGUE OF THE EDDY HEIGHT DISTRIBUTION FOR DISCRETE EDDY
SIZES

Here, we relate the continuous distribution of eddy heights, P(h), to the equivalent discrete
distribution previously employed by Perry and Chong.17 Perry and Chong elected to employ a
distribution in which the height of the eddies doubles at every scale, so that

hn = hmin,2hmin,4hmin,8hmin, . . . ,2n−1hmin, . . . . (A1)

This implies that the scale, n, relates to the eddy height via

n = 1 + log2
hn

hmin
. (A2)

The range of heights represented by each scale are given by ∆hn = hn+1 − hn, so that

∆hn = hmin,2hmin,4hmin,8hmin, . . . ,2n−1hmin, . . . . (A3)

We denote by Mn the number of eddies of scale n that will be attached to a section of the wall of unit
area. Since the (n + 1)th scale is twice the size of the nth scale, and there is no length scale present
other than the height of the eddy, it follows that there will be as many eddies of scale n + 1 on a
wall-area of (2L)2 as there are eddies of scale n on a wall-area of L2. Hence,

L2Mn = (2L)2Mn+1. (A4)

It follows therefore that

Mn ∝ 2−2n. (A5)

We can therefore represent the distribution of eddies as a function of their heights as Mn/∆hn.
Combining (A5) and (A3) with (A2) then gives

Mn

∆hn
∝ h−3

n , (A6)

and hence, the h-dependence of the distribution of eddy heights is equivalent to P(h).
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APPENDIX B: PROOF OF CAMPBELL’S THEOREM APPLIED TO ATTACHED EDDIES

Since Campbell’s theorem is usually applied to systems in which events are randomly placed
in time, rather than space as the eddies are here, it is worthwhile to extend the existing proofs to
cover spacial rather than temporal averages. This is an extension of a proof of Campbell’s theorem
by Rice.40 A more limited proof of Campbell’s theorem for attached eddies has been presented in
a previous work by Marusic and Woodcock.35 While that proof only applied to first and second
order moments of the velocity, the proof presented here can be used to derive to all moments of the
velocity.

Central to the following proof are two physical assumptions we have made about the eddies.
The first is the inherently reasonable assumption that there is a limited region of space over which
the velocity field corresponding to a single eddy is non-negligible. Mathematically, this manifests as
the fact that any integral over the x-y plane of the velocity field corresponding to a single eddy will
be equivalent.

We illustrate here, in one dimension: for any function f (x),
∞

−∞

f (x − a) da =

∞
−∞

f (x) dx. (B1)

In fact, it is not necessary for the integral to be taken over the entire real line. It is sufficient that the
value of f (x) should be zero (or negligible) outside the bounds of integration. In this work, we will
always take integrals over the entire x-y plane when using the above equation.

The second assumption we make use of is more controversial, namely, that the locations of
each eddy are independent of each other. As has been stated in Sec. II, the angled brackets refer
to ensemble averages in this work. Again we demonstrate with a one-dimensional example: if F(x)
represents the sum of K copies of the function f (x), each of which is randomly located, so that

F(x) =
K
k=1

f (x − ak), (B2)

then, the ensemble average of F(x) will be given by

⟨F(x)⟩ =
∞

−∞

p1(a1)
∞

−∞

p2(a2) . . .
∞

−∞

pK(aK)
K
k=1

f (x − ak) da1 da2, . . . , daK , (B3)

where the pk(ak) represents the probability that the kth variable has the value ak. For each element
k of the sum above, it is only the integral over ak that will be non-zero. This is because, as we
have assumed, the location of each eddy is independent of the location of every other eddy. The
implication is that the above equation can be simplified to

⟨F(x)⟩ =
K
k=1

∞
−∞

pk(ak) f (x − ak) dak . (B4)

Characteristic functions will be used within this proof. We will therefore briefly define char-
acteristic functions and explain their relevant characteristics here. If f (α) is a probability density
function, its characteristic function, F(γ), will be defined via

F(γ) = 

eiαγ

�
=

∞
−∞

eiαγ f (α) dα. (B5)

Characteristic functions have three properties of which we make use. The first of these relates
to the average of a sum of independent random variables. If we have such a sum of independent
random variables

S = α1 + α2 + α3 + · · · + αk, (B6)
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then, the characteristic function of the sum will be given by


eiSγ

�
=


eiα1γ

� 

eiα2γ

� 

eiα3γ

�
. . .



eiαkγ

�
. (B7)

The second property of characteristic functions we use is that we may obtain f (α) from F(γ) via

f (α) = 1
2π

∞
−∞

e−iαγF(γ) dγ. (B8)

The third property of characteristic functions is that they can easily be used to determine higher
order moments, so that the nth moment of α will be given by

⟨αn⟩ = i−n
dn

dγn



eiαγ

� ����γ=0
. (B9)

(The subscript γ = 0 on the right above indicates that γ should be set to zero after all of the indi-
cated differential operations have been performed.) Since we wish to derive ⟨UkV lWm⟩, we define a
vector γ ≡ (γx, γy, γz). We can then define the general higher order moments of the velocity via



UkV lWm

�
= i−(k+l+m) ∂k

∂γk
x

∂l

∂γl
y

∂m

∂γm
z



eiU·γ

� ����γ=0
. (B10)

Alternatively, expanding the integrand in a Taylor series allows the characteristic function to be
expressed as



eiU·γ

�
=

∞
k=0

∞
l=0

∞
m=0

(iγx)k
k!

(iγy)l
l!

(iγz)m
m!



UkV lWm

�
. (B11)

We similarly expand the logarithm of the characteristic function, so that

loge



eiU·γ

�
=

∞
k=0

∞
l=0

∞
m=0

(iγx)k
k!

(iγy)l
l!

(iγz)m
m!
λk,l,m, (B12)

where the λk,l,m are functions to be determined, except that it is understood that

λ0,0,0 = 0, since loge(1) = 0. (B13)

We will subsequently show how these λk,l,ms relate to the moments of the velocity fluctuations and
the eddy contribution functions. But right now, we can relate these λk,l,ms to the moments of U
through a little algebra. From the definition of the λk,l,ms, we can see that they will be given by

λk,l,m = i−(k+l+m) ∂k

∂γk
x

∂l

∂γl
y

∂m

∂γm
z

loge



eiU·γ

� ����γ=0
. (B14)

It is possible to convert the above into a closed form expression for λk,l,m using Faà di Bruno’s
formula, but it is quite cumbersome, and less practical than (B14). Especially, as we are unlikely to
require moments of much higher order than 10. It is easy to verify from the above equation that

λ1 ≡ λ1,0,0 = ⟨U⟩, λ0,1,0 = ⟨V ⟩, λ0,0,1 = ⟨W ⟩. (B15)

It is convenient to note that so long as k + l + m ≥ 2, U can be replaced by u on the right hand
side of (B14), without altering the value of λk,l,m. Therefore, so long as k + l + m ≥ 2, we can
alternatively write

λk,l,m = i−(k+l+m) ∂k

∂γk
x

∂l

∂γl
y

∂m

∂γm
z

loge



eiu·γ

� ����γ=0
, (B16)

which dramatically simplifies the derivation of the moments of u. Using (B16), it is now possible to
derive expressions for all moments of the velocity fluctuations. Some of these are given in (21).
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In order to complete the proof, we must now show that the λk,l,ms given in (B12) relate to the
eddy contribution functions via

λk,l,m = β

hmax
hmin

Ik,l,m(Z)h2P(h) dh. (B17)

We start by recognising that the probability that the velocity, U(x), is within the range (U(x),U(x)
+ dU(x)) can be expressed as

∞
N=0

Pr {There are exactly N eddies}

× Pr {Given that there are N eddies, U lies in (U,U + dU)} . (B18)

We now introduce a new probability function, Φ(U), which represents the probability that the veloc-
ity has a particular value. We also introduce the function, ΦN(U), which is the probability that U has
a particular value given that there are N eddies. These two functions are related via

Φ(U) =
∞

N=0

P(N)ΦN(U), (B19)

where P(N) represents the probability that there are exactly N eddies. According to Poisson’s law
of small probabilities, the probability that there will be exactly N eddies on a plane of area L2 will
be

P(N) = (βL2)N
N!

e−βL
2
. (B20)

If we assume that the system contains exactly N eddies, then the characteristic function for the
mean velocity will be given by



eiUN ·γ

�
≡

∞
−∞

eiUN ·γΦN(UN) dUN . (B21)

The velocity field that corresponds to these N eddies is given by

UN(x) =
N
k=1

Q
(x − xek

hk

)
. (B22)

When we take the ensemble average of UN(x), we are averaging over infinitely many realisa-
tions in which N eddies are randomly placed on a plane of area L2. The probability density function
for perfectly randomly placed eddies is

p(xe) = 1
L2 . (B23)

We now wish to determine


eiUone eddy·γ

�
, but we do not know the form of Φone eddy (U), the proba-

bility density function for the velocity field corresponding to a single eddy. We therefore instead
use the probabilities relating to the locations and heights of the eddies. Hence, using (B23), we can
show that the characteristic function of a single eddy will be



eiUone eddy·γ

�
=

L/2
−L/2

hmax
hmin

exp
(
iQ

(x − xe

h

)
· γ

)
P(h) dh p(xe) dxe

=
1
L2

L/2
−L/2

hmax
hmin

exp
(
iQ

(x − xe

h

)
· γ

)
P(h) dh dxe. (B24)
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Because the right hand side of the above equation contains an integral over the entire x-y plane, we
can therefore employ (B1) to simplify it to



eiUone eddy·γ

�
=

1
L2

L/2
−L/2

hmax
hmin

exp
(
iQ

( x
h

)
· γ

)
P(h) dh dx dy, (B25)

which importantly means that the characteristic functions of each Φone eddy(U,h) are identical,
regardless of the location of the eddy. By combining (B7) and (B8) with (B22), we find that

ΦN(U) = 1
2π

∞
−∞

e−iU·γ
*..
,

1
L2

L/2
−L/2

hmax
hmin

exp
(
iQ

( x
h

)
· γ

)
P(h) dh dx dy

+//
-

N

dγ. (B26)

By summing over all N using (B19) and (B20), we can determine the overall probability, Φ(U).
Taking into account the fact that U = 0 for N = 0, the overall probability can be shown to be

Φ(U) = lim
L→∞

1
2π

∞
−∞

exp

−iU · γ − βL2 + β

L/2
−L/2

hmax
hmin

exp
(
iQ

( x
h

)
· γ

)

× P(h) dh dx dy

dγ. (B27)

By making use of the fact that

βL2 = β

L/2
−L/2

hmax
hmin

P(h) dh dx dy, (B28)

and taking the limit as L → ∞, (B27) becomes

Φ(U) = 1
2π

∞
−∞

exp


−iU · γ + β

∞
−∞

hmax
hmin


exp

(
iQ

( x
h

)
· γ

)
− 1


P(h) dh dx dy




dγ. (B29)

The characteristic function of a system containing an unspecified number of eddies will be



eiU·γ

�
≡

∞
−∞

eiU·γΦ(U) dU. (B30)

By taking into account the fact that

1
2π

∞
−∞

eiU·(γ−γ
′) dU = δd(γ − γ′), (B31)

where δd(γ) is a Dirac delta function, the logarithm of the characteristic function can be shown to be

loge



eiU·γ

�
= β

∞
−∞

hmax
hmin


exp

(
iQ

( x
h

)
· γ

)
− 1


P(h) dh dx dy, (B32)

which, when expanded in a Taylor series becomes

loge



eiU·γ

�
= β

∞
k=0

∞
l=0

∞
m=0

(iγx)k
k!

(iγy)l
l!

(iγz)m
m!

×
∞

−∞

hmax
hmin


Qk

x

( x
h

)
Ql

y

( x
h

)
Qm

z

( x
h

)
− 1


P(h) dh dx dy. (B33)
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By equating the coefficients above with those in (B12), we find that the λk,l,ms are given by

λk,l,m = β

∞
−∞

hmax
hmin

Qk
x

( x
h

)
Ql

y

( x
h

)
Qm

z

( x
h

)
P(h) dh dx dy, (B34)

which satisfies (B17) and thereby concludes the proof.

APPENDIX C: IMPLICATIONS OF BIOT-SAVART’S LAW

The derivation of the log law given in Sec. III A relies on the statement, given mathematically
in (24), that there exists a point above the eddy beyond which the eddy has no significant effect
on the flow field. This follows from the Biot-Savart equation on condition that the vorticity field
is spatially bounded. This equation states that if ω(X) is the vorticity field associated with a single
eddy, then the velocity field associated with that eddy will be

Q(X) = 1
2π


V

ω(X′) × (X − X′)
|X − X′|3 dX′, (C1)

where the integral is understood to be evaluated over the entire volume. This implies that at a
sufficient distance from the wall,

Q(X) ∼ O
(

1
Z2

)
. (C2)

We can therefore infer that as Z increases, Q(X) will eventually become negligible. This can
reasonably be simplified to (24).
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